

Offshore Wind O&M Challenges

2011 Wind Turbine Condition Monitoring Workshop

Becki Meadows
Senior Engineer
Offshore Wind and
Ocean Power Systems

September 19th, 2011

Overview

- Offshore Wind in Europe
- Offshore Wind in the United States
- Current Technology
- Technology Trends
- Offshore O&M Challenges
- Opportunities

Offshore Wind in Europe

China: 135MW installed; 2GW authorized United States: 2.4 GW proposed

Offshore Wind in the United States

http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf

Offshore Wind in the United States

Current Technology The control of t

New sensors and condition based monitoring equipment will be needed to adapt to these new environments.

Technology Challenges

- Corrosion Protection
- Nacelle pressurization
- Personnel Access, shelter, and safety
- Wind/Wave Structural Design
- Hurricanes
- Ice Loading
- Grids and submarine electrical infrastructure
- Condition monitoring and predictive maintenance
- Inspection
- Decommissioning
- Environmental impacts

Current Technology ratory

Estimated life cycle cost breakdown for a baseline offshore wind project

Source	O&M Cost (2010\$/MWh)	
Ernst & Young (2009)	<i>\$50</i>	
KPMG (2010)	<i>\$27 - \$48</i>	
ECN (Lako, 2010)	\$40 - \$66	
EWEA (Krohn, et al, 2009)	\$21	
IEA (Salvadores and Keppler 2010)	\$11 - \$54	
Cape Wind (MDPU 2010)	\$30 to \$50	
Average	\$39	

Offshore wind O&M cost estimates

- Operations and maintenance costs vary significantly by project:
 - Depth
 - Distance to shore
 - Prevailing sea and weather conditions (UKERC 2010).
- Offshore O&M costs are estimated to be twice as much as onshore
 - ~20.5% of life cycle costs of an offshore wind project
 - Reported values range from \$11- \$66/MWh
 - Driven by frequent minor repairs or faults that are unknown

Current Technology

- Fixed bottom shallow water 0-30m depth
- 2 5 MW upwind rotor configurations
- 70+ meter tower height on monopoles and gravity bases
- Existing oil and gas experience is essential
- Reliability problems have discouraged early boom in development.
- Costs are 2X land-based due to higher than expected cost and uncertainty with O&M, logistics, and installation.

Current Technology

Offshore Wind farm Maintenance Egmond aan Zee

Offshore demonstration project supported by Dutch government

- Selection of site
- Issue of building permits
- Investment subsidy
- Production subsidy

Built and operated by NoordzeeWind

- 36 Vestas 3 MW V90 wind turbines
- 1 met mast, 116 m high
- Hub height 70 m, rotor diameter 90 m
- Monopiles with scour protection
- Water depth 20 m
- 3 x 34 kV cables to the shore
- 34/150 kV substation on shore
- Renewable electricity for +/- 100.000 house holds (~ 330 GWh)
- Design life 20 years

Slide Credits:

Jaap 't Hooft SenterNovem

Henk Kouwenhoven NoordzeeWind

EOW 2009 Stockholm

Percent Lost MWh

Ref: Operations Report 2008, NoordzeeWind, Doc No. OWEZ_R_000_20090807 Operations 2008.pdf, websites: www.noordzeewind.nl

Technology Trends

- Turbine Scaling
 - Larger rotors, taller towers, higher nameplate capacity, primarily enabled by advanced controls (UpWind 2011).
 - Component and machine economies of scale. Fewer trips from port to installation site.
 - Fewer foundations and maintenance trips per unit of installed capacity.
 - Reduced production, installation, and O&M costs.
 - Downtime on larger scale turbines will have larger impact on AEP

3.6 MW Turbines 5 MW Turbines

Offshore machines will have a higher value proposition for health monitoring technology.

Lower availability in offshore projects has been an issue— 80-95% as compared to 95-98% onshore

- Vessel deployment cost and logistics
- Accessibility
 - Eliminate need for specialized vessels
 - Weather Windows
 - Safe personnel access
- Reliability
 - Turbine designs for reduced maintenance

Courtesy: www.scottishenterprise.com/stn-feb07-3

Vessel Deployment Costs and Logistics

- Day rates for vessels are very expensive
- Vessels are scarce and may not be available when needed.
- To minimize costs
 maintenance actions should
 limit use
- Turbine designs should incorporate strategies to avoid large vessel dependence.

Accessibility

- 30-50 % down time due to poor weather
- Varies from site to site and year to year
- Accessibility is dependent on weather conditions
- Sea state is a driving factor
- Stepping off a boat to a landing point is only safe in calm waters
- Weather windows can be widened with better access and construction methods
 - smaller boats
 - temporary bridges
- Improve forecasting integrated into maintenance strategy

Reliability

- Reliability is central to offshore economic viability.
- Reliability must be improved at the design stage.
- How to improve reliability:
 - All systems and subsystems should be specified. Understand failure modes and risk of failure
 - Certification
 - Comprehensive testing at full systems level and subcomponent level
 - Redundancy only where appropriate
 - What should the target be?

Opportunities National Renewable Energy Laboratory

Health Monitoring

- Improved preventative and corrective maintenance schemes are critical for economic viability
 - reduce the number of unscheduled visits
 - can avoid the cost of site visits through improved CBM.
- Intelligent integrated control systems that are self diagnostic
 - fault accommodating control can help mitigate control system failures with strategies that compensate for sensor and actuator faults
 - increased robustness that allows maintenance to be delayed until a scheduled visit to minimize access frequency

Example of Alarm Severity Responses

Severity	Туре	Planning of inspection
6	Danger	Immediate Response
5	Alert	One week response
4	Alert	Inspect on next scheduled visit
3	Alert	scheduled visit
2	Good	No action
1	System	Check on next visit

